Targeted therapies have revolutionized cancer chemotherapy. Unfortunately, most patients develop multifocal resistance to these drugs within a matter of months. Here, we used a high-throughput phenotypic small molecule screen to identify MCB-613 as a compound that selectively targets -mutant, EGFR inhibitor-resistant non-small cell lung cancer (NSCLC) cells harboring diverse resistance mechanisms. Subsequent proteomic and functional genomic screens involving MCB-613 identified its target in this context to be KEAP1, revealing that this gene is selectively essential in the setting of EGFR inhibitor resistance. In-depth molecular characterization demonstrated that (1) MCB-613 binds KEAP1 covalently; (2) a single molecule of MCB-613 is capable of bridging two KEAP1 monomers together; and, (3) this modification interferes with the degradation of canonical KEAP1 substrates such as NRF2. Surprisingly, NRF2 knockout sensitizes cells to MCB-613, suggesting that the drug functions through modulation of an alternative KEAP1 substrate. Together, these findings advance MCB-613 as a new tool for exploiting the selective essentiality of KEAP1 in drug-resistant, -mutant NSCLC cells.