Description

Nine drugs have been marketed for 10 years for the treatment of advanced melanoma (AM). With half of patients reaching a second line, the optimal sequence of treatments remains unclear. To inform policy-makers about their efficiency, we performed a cost-effectiveness analysis of sequential strategies in clinical practice in France, for BRAF-mutated and wild-type patients. A multistate model was developed to describe treatment sequences, associated costs, and health outcomes over 10 years. Sequences, clinical outcomes, utility scores, and economic data were extracted from the prospective Melbase cohort, collecting individual data in 1518 patients since 2013, from their AM diagnosis until their death. To adjust the differences in patients' characteristics among sequences, weighting by inverse probability was used. In the BRAF-mutated population, the MONO-targeted therapies (TT)-anti-PD1 sequence was the less expensive, whereas the anti-PD1-BI-TT sequence had an incremental cost-effectiveness ratio (ICER) of 180,441 EUR/QALY. Regarding the BRAF wild-type population, the three sequences constituted the cost-effective frontier, with ICERs ranging from 116 to 806,000 EUR/QALY. For BRAF-mutated patients, the sequence anti-PD1-BI-TT appeared to be the most efficient one in BRAF-mutated AM patients until 2018. Regarding the BRAF wild-type population until 2018, the sequence starting with IPI+NIVO appeared inefficient compared to anti-PD1, considering the extra cost for the QALY gained.