The ERK, p38 and JNK mitogen activated protein kinases (MAPKs) are intracellular signalling pathways that play a pivotal role in many essential cellular processes such as proliferation and differentiation. MAPKs are activated by a large variety of stimuli and one of their major functions is to connect cell surface receptors to transcription factors in the nucleus, which consequently triggers long-term cellular responses. This review focuses on their in vitro and in vivo roles in adipocyte differentiation and obesity. Hyperplasia of adipose tissue is a critical event for the development of obesity. Several studies have analysed the role of MAPKs in vitro in adipocyte differentiation of preadipocyte established cell lines. In the case of ERK, although the first data appeared contradictory, a consensus scenario arises: ERK would be necessary to initiate the preadipocyte into the differentiation process and, thereafter, this signal transduction pathway needs to be shut-off to proceed with adipocyte maturation. The limitation of these cellular models is that only terminal adipocyte differentiation can be analysed, eluding the early proliferative steps of adipogenesis. New insights are now emerging by investigations conducted either in vitro with the use of embryonic stem (ES) cells or in vivo with mice where these genes are invalidated. These studies not only confirm and/or precise the various functions of MAPKs in adipogenesis but, importantly, reveal unsuspected roles, for example JNK in obesity or ERK in adipogenesis of ES cells, and, for a given pathway, assign specific functions to each isoform. It appears now that a fine tuning of the MAPKs regulates both normal and pathological adipogenesis. The precise understanding of the cascade of these molecular events and the way to regulate them will be certainly crucial in order to efficiently fight obesity.