Description

Human CD21 B cells present with an activated phenotype and accumulate in distinct disorders connected with chronic immune stimulation. Signaling studies had revealed an increased basal phosphorylation of spleen tyrosine kinase (SYK) and phospholipase Cγ2. Additional BCR stimulation of these constitutively active cells, however, led to reduced activation of these signaling molecules and subsequently NF-κB and Ca activation. In this article, we demonstrate that high SYK expression is a common feature of CD21 B cells independent of the underlying disorder, and that this high expression is sufficient to drive constitutive phosphorylation of SYK and its immediate targets Bruton's tyrosine kinase and phospholipase Cγ2. Inhibition of SYK activity eliminated features of the constitutive activation in these cells and partly restored BCR signaling. High SYK expression is especially induced by CpG or CD40L in combination with IL-21, but not BCR stimulation, suggesting the importance of the immune-stimulatory context for the induction of this B cell phenotype. In summary, high SYK expression is a common feature of human CD21 B cells and presumably results from chronic activation in inflammatory environments present in a subgroup of patients with heterogeneous disorders like chronic infection, autoimmunity, and immunodeficiency. High SYK expression by itself drives the constitutive activation observed in these B cells, which in turn may contribute to the hyporesponsiveness upon BCR stimulation. Given the high prevalence of autoreactive clones among CD21 B cells in autoimmune disorders, the dominant role of SYK in CD21 B cells may provide a new option for therapeutic interventions in patients with expanded CD21 B cells and humoral autoimmunity.