Description

Basic polymers such as polylysine have been found to activate insulin receptor autophosphorylation and kinase activity toward substrates. It was suggested that acidic receptor domains may be involved in the interaction of the receptor with these basic effectors. In a previous study, we have shown that the receptor acid-rich C-terminal sequence, including residues 1270-1280, is involved in the regulation of the receptor kinase activity. Moreover, this domain may be the site of interaction with histone, which is a modulator of the receptor kinase. In this study, we investigated whether the insulin receptor domain comprising amino acids 1270-1280 is involved in the interaction with polybasic effectors. We used anti-peptide serum directed to this sequence, and basic activators such as polylysine, polyarginine and protamine sulfate. Our antibodies inhibit polylysine-induced receptor autophosphorylation, whereas they have no effect on receptor phosphorylation stimulated by concanavalin A which is a non-basic activator of the insulin receptor. Polylysine-induced receptor aggregation was blocked by the antibodies (Fab fragments or whole Ig), indicating that competition occurs between the antibody and polylysine at the level of their binding site to the receptor. Finally, we observed a direct interaction of the 125I-peptide corresponding to receptor sequence 1270-1280 with the basic polymers in dot-blot experiments. Interestingly, the peptide did not bind spermine, a basic molecule which is not an activator of the insulin receptor kinase. Our data indicate that the insulin receptor C-terminal acidic domain including residues 1270-1280 is involved in the interaction of polylysine and other polybasic molecules with the receptor. Since this receptor region has been implicated in the regulation of the receptor kinase activity, we propose that interaction of basic effectors with this domain may be responsible for their activating properties.