The use of the nontoxic B subunit of cholera toxin (CTB) as mucosal adjuvant and carrier-delivery system for inducing secretory Ab responses has been documented previously with different soluble Ags. In this study, we have evaluated this approach for inducing CTL responses against a prototype Ag, OVA, in the female genital mucosa. We report here the ability of an immunogen comprised of CTB conjugated to OVA (CTB-OVA) given by intravaginal (ivag) route to induce genital OVA-specific CTLs in mice. Using adoptive transfer models, we demonstrate that ivag application of CTB-OVA activates OVA-specific IFN-gamma-producing CD4 and CD8 T cells in draining lymph nodes (DLN). Moreover, ivag CTB induces an expansion of IFN-gamma-secreting CD8+ T cells in DLN and genital mucosa and promotes Ab responses to OVA. In contrast, ivag administration of OVA alone or coadministered with CTB failed to induce such responses. Importantly, we demonstrate that ivag CTB-OVA generates OVA-specific CTLs in DLN and the genital mucosa. Furthermore, genital CD11b+ CD11c+ dendritic cells (DCs), but not CD8+ CD11c+ or CD11c- APCs, present MHC class I epitopes acquired after ivag CTB-OVA, suggesting a critical role of this DC subset in the priming of genital CTLs. Inhibition studies indicate that the presentation of OVA MHC class I epitopes by DCs conditioned with CTB-OVA involves a proteasome-dependent and chloroquine-sensitive mechanism. These results demonstrate that CTB is an efficient adjuvant-delivery system for DC-mediated induction of genital CTL responses and may have implications for the design of vaccines against sexually transmitted infections.